

Configuring any IR remote which can be

used to control a Desktop or Laptop using

Serial or USB connections

DSP Project

Sonali Dubey 200801208
Yash Soni 200801207

1 DSP Project

Index

1. Brief Overview of the project 2
2. Working of an IR remote 4
3. RC-5 Protocol 5
4. Remote Assembly

4.1. Requirements
4.2. Serial Port
4.3. TSOP 1738
4.4. WinLIRC

4.5. IR-Assistant
5. Implementation of TSOP on Matlab
6. Decoding RC5 protocol using Matlab

7
7
8
9

10

12
16

7. Appendix
7.1. Configuration file for the remote

7.2. Sample Manchester coded signals

18
19
20

2 DSP Project

 1. Brief Overview of the project

The aim of this project is to control a desktop or a Laptop with a simple remote, like the one
we already use for our TV-set. The buttons in the remote can be configured to either start
applications, swap between windows, flip pages during presentations, turning off the
system and many more. Almost any application that uses shortcut keys and mouse can be
controlled using this setup.

 One question that would come up in anyone’s mind is -- Why is there a need to

make such device?

Today's PCs are fast becoming home entertainment centres, with DVD
players, music jukeboxes and even TV recording facilities.
This is all very well, but it's not much fun if you have to use a number of key
presses and mouse clicks to launch the required programs and get them
working. Using cabled mice and keyboards is hardly as easy as operating our
domestic TVs either.

The answer to this simple question lies in the fact that we will try everything
to make our life easier. As rightly said by someone, “I don’t think necessity is
the mother of invention- invention arises directly from idleness, possibly also
from laziness. To save oneself trouble”

 Many other technical advantages are:

 Can control computer from a distance.

 No need to attach or make any additional changes to the hardware because it

connects to the serial port (if provided) or USB port in a PC.

 No external power source needed.

 Works with any type of used/un-used TV remote (Just have to configure the

remote)

 Some of the new laptops have same sort of remote mechanism supplied, but

its use is limited:

o Firstly not every laptop/desktop has this facility.

o You can’t configure the remote as per your needs.

o Can’t use that remote with any other device.

o Should have an infra-red sensor built in the System.

 Most important, constructing this whole mechanism is cheap (costs around

300/-Rs.)

3 DSP Project

Things Needed

1. An IR remote – almost any old remote will do.

2. An infrared receiver – have to build this

3. WinLIRC –

 Windows equivalent of LIRC, the Linux Infrared Remote Control program.

LIRC is an open source package that allows you to receive and

send infrared signals with your Linux computer system. Specifically, it is a

kernel module that must be compiled by hand in order for it to work with an

existing Linux kernel.

4. IR Assistant –

 It is a shareware that allows you to emulate mouse actions, launch
applications, execute macros, and more.

Brief Working of the whole setup:

1. We press a button on the remote control.
2. The IR receiver receives the signal sent by the remote.
3. WinLIRC is pre-configured (by the user) to recognize this RAW signal.
4. The name of the signal is sent to IR assistant by WinLIRC.
5. IR Assistant associates the signal with a command we choose (for example, launching

a file)
6. Finally IR Assistant sends the command to the application you chose on your PC.

Future perspectives:

 Making the IR receiver assembly such that it can recognize signals from 2 different
remotes and perform the respective actions.

 It can be used to play multiplayer educational games, 2 persons can work on their
stuff individually etc.

http://www.lirc.org/
bword://!!ARV6FUJ2JP,open%20source/
bword://!!ARV6FUJ2JP,infrared/
bword://!!ARV6FUJ2JP,Linux/

4 DSP Project

 2. Working of an Infrared Remote

The dominant remote-control technology in home-theatre applications is infrared
(IR). Infrared light is also known as plain-old "heat." The basic premise at work in an
IR remote control is the use of light to carry signals between a remote control and
the device it's directing. Infrared light is in the invisible portion of the
electromagnetic spectrum.

An IR remote control (the transmitter) sends out pulses of infrared light that

represent specific binary codes. These binary codes correspond to commands, such

as Power On/Off and Volume Up. The IR receiver in the TV, stereo or other device

decodes the pulses of light into the binary data (ones and zeroes) that the device's

microprocessor can understand. The microprocessor then carries out the

corresponding command.

To avoid interference caused by other sources of infrared light, the infrared receiver

on a TV only responds to a particular wavelength of infrared light, usually 980

nanometers.

2.1 Process

Pushing a button on a remote control sets in motion a series of events
that causes the controlled device to carry out a command. The process works
something like this:

1. When we push the "volume up" button on the remote control, it causes it to
touch the contact beneath it and complete the "volume up" circuit on the
circuit board. The integrated circuit detects this.

2. The integrated circuit sends the binary "volume up" command to the LED at
the front of the remote.

3. The LED sends out a series of light pulses that corresponds to the binary
"volume up" command.

http://electronics.howstuffworks.com/light.htm
http://electronics.howstuffworks.com/micrprocessor.htm

5 DSP Project

 3. RC-5 Protocol (Protocol used for communicating between Tx and Rx)

The RC-5 protocol was developed by Philips in the late 1980s as a semi-
proprietary consumer IR (infrared) remote control communication protocol for consumer
electronics.

Protocol Details
The basics of the protocol are well known. The handset contains a keypad and a
transmitter integrated circuit (IC) driving an IR LED. The command data is a Manchester
coded bit-stream modulating a 36 kHz carrier. The IR signal from the transmitter is detected
by a specialized IC with an integral photo-diode, and is amplified, filtered, and demodulated
so that the receiving device can act upon the received command. RC-5 only provides a one-
way link, with information traveling from the handset to the receiving unit.

The command comprises 14 bits:

 A start bit, which is always logic 1 and allows the receiving IC to set the proper gain.
 A field bit, which denotes whether the command sent is in the lower field (logic 1 = 0 to

63 decimal) or the upper field (logic 0 = 64 to 127 decimal). The field bit was added later
by Philips when it was realized that 64 commands per device were insufficient.
Previously, the field bit was combined with the start bit. Many devices still use this
original system.

 A control bit, which toggles with each button press. This allows the receiving device to
distinguish between two successive button presses (such as "1", "1" for "11") as
opposed to the user simply holding down the button and the repeating commands being
interrupted by a person walking by, for example.

 A five-bit system address that selects one of 32 possible systems.
 A six-bit command that (in conjunction with the field bit) represents one of the 128

possible RC-5 commands.

The 36 kHz carrier frequency was chosen to render the system immune to interference from
TV scan lines. Since the repetition of the 36 kHz carrier is 27.778 μs and the duty factor is
25%, the carrier pulse duration is 6.944 μs. Since the high half of each symbol (bit) of the RC-
5 code word contains 32 carrier pulses, the symbol period is 64 x 27.778 μs = 1.778 ms, and
the 14 symbols (bits) of a complete RC-5 code word takes 24.889 ms to transmit. The code
word is repeated every 113.778 ms (4096 / 36 kHz) as long as a key remains pressed.

Manchester code for ‘p+’ button as seen in Audacity.

Note: the hex code transmitted by the remote for the same is 0x1020

http://en.wikipedia.org/wiki/Consumer_IR
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/LED
http://en.wikipedia.org/wiki/Manchester_code
http://en.wikipedia.org/wiki/Manchester_code

6 DSP Project

7 DSP Project

 4. Remote Assembly

4.1 Requirements:

1. Female DB9 connector

2. TSOP 1738 IR receiver

3. 78L05 voltage regulator

4. 4700 Ω resistor

5. 1n4148 diode

6. 4.7 µF capacitor

7. T.V remote

8. Softwares

i. WinLIRC

ii. IR assistant

Schematics of the IR receiver

http://lnx.manoweb.com/lirc/mids/components-color.png
http://lnx.manoweb.com/lirc/mids/components-color.png
http://lnx.manoweb.com/lirc/mids/components-color.png
http://lnx.manoweb.com/lirc/mids/components-color.png

8 DSP Project

4.2 Serial Port

Back and front of Female DB15 connector

It is an asynchronous port on the computer used to connect a serial device to the

computer and capable of transmitting one bit at a time. Serial ports are typically

identified on computers as COM (communications) ports.

Below is a listing of each of the pins located on the DB9 connector and what each

of these pins is for.

PIN PURPOSE SIGNAL NAME

Pin 1 Data Carrier Detect DCD

Pin 2 Received Data RxData

Pin 3 Transmitted Data TxData

Pin 4 Data Terminal Ready DTR

Pin 5 Signal Ground Gnd

Pin 6 Data Set Ready DSR

Pin 7 Request To Send RTS

Pin 8 Clear To Send CTS

Pin 9 Ring Indicator RI

For this reciever, we will be using:

Pin 7 RTS- line which gives power to the voltage regulator which

fixes it to 5 stable volts.

Pin 5 Gnd- ground.

Pin 1 DCD- The data output of the IR receiver is connected to the

DCD line of the serial port together with a pull-up resistor coming

from the power line.

9 DSP Project

 4.3 TSOP 1738

The TSOP17. – series are miniaturized receivers for infrared remote control
systems. PIN diode and preamplifier are assembled on lead frame, the epoxy
package is designed as IR filter. The demodulated output signal can directly
be decoded by a microprocessor. TSOP17xx is the standard IR remote control
receiver series, supporting all major transmission codes.

Features
_ Photo detector and preamplifier in one package
_ Internal filter for PCM frequency
_ Improved shielding against electrical field disturbance
_ TTL and CMOS compatibility
_ Output active low
_ Low power consumption
_ High immunity against ambient light
_ Continuous data transmission possible (up to 2400 bps)
_ Suitable burst length .10 cycles/burst

Application circuit

10 DSP Project

4.4 WinLIRC

It is a Windows equivalent of LIRC, the Linux Infrared Remote Control
program.
LIRC is an open source package that allows you to receive and
send infrared signals with your Linux computer system. Specifically, it is a
kernel module that must be compiled by hand in order for it to work with an
existing Linux kernel.

WinLIRC is supplied under the GNU Public License. Source code is included in

the installation package.

The Main WinLIRC Window

http://www.lirc.org/
bword://!!ARV6FUJ2JP,open%20source/
bword://!!ARV6FUJ2JP,infrared/
bword://!!ARV6FUJ2JP,Linux/
http://www.gnu.org/copyleft/gpl.html

11 DSP Project

4.5 IR Assistant

It is a shareware that allows you to emulate mouse actions, launch applications,
execute macros, and more.
It is free for private and educational use.

12 DSP Project

 5. TSOP simulation on Matlab

 A TSOP is a device which collects (receives) the Modulated wave sent out by the

infrared transmitter in the Remote.

 The signal then passes through an AGC circuit which amplifies or de-amplifies it

according to the signal strength.

 The signal is then passed through a Bandpass filter which removes the noise signals

and allows only a band of frequency to pass through it.

 The output signal from the Bandpass filter is one which only has frequency

components near 36kHz.

 Then the signal is demodulated using a demodulator and the final Manchester

coded signal is output from the pin 3 of the TSOP

Block Diagram of an TSOP

13 DSP Project

x=[1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1]; %Input Signal

modsig=modulate(x,36000,80000,'pwm'); % PWM modulation of the input signal

t=(0:1/61:1)
noise=sin(2*pi*12000*t); % Noise signal generation

noiseadded=modsig+noise; % Adding the noise signal

poles(101)=1;
for j=1:1:101
 poles(j)=1;
end

nonoise=filter(num,poles,noiseadded); % Filtering the Noisy Signal
check=filter(num,poles,modsig); % Filtering the simple modulated signal

z1=demod(modsig,36000,80000,'pwm'); % Demod. of the Simple modulated Signal
z1=simple output

zz=z1;
inputlength=length(zz);
for i=1:1:inputlength
 if (zz(i)>0)
 zz(i)=1;
 end
end
zzz=nonoise
inputlength1=length(nonoise)
z2=z1

for i=1:1:inputlength1
 if (zzz(i)>0)
 zzz(i)=1;
 elseif (zzz(i)<0)
 zzz(i)=0;
 end
end
z=demod(zzz,36000,80000,'pwm');
dm=z;

for m=1:1:length(z)-1
 dm(m)=z(m+1);
end

14 DSP Project

subplot(2,4,1), plot(x); title('Original Signal');
subplot(2,4,2), plot(modsig);title('modulated sg.');
subplot(2,4,3), plot(noise);title('noise signal');
subplot(2,4,4),plot(noiseadded);title('Noise added');
subplot(2,4,5), plot(z2); title('Demodulated Signal via filter');
subplot(2,4,6), plot(z1); title('Demodulated Signal nofilter');
subplot(2,4,7), plot(check); title('Filtered nonoise signal')
subplot(2,4,8), plot(nonoise);title('noisy sig passed frm filter');

BandPass filter Filter Design

function Hd = bandpass1
Fs = 80; % Sampling Frequency

Fstop1 = 33; % First Stopband Frequency
Fpass1 = 34; % First Passband Frequency
Fpass2 = 38; % Second Passband Frequency
Fstop2 = 39; % Second Stopband Frequency
Dstop1 = 0.001; % First Stopband Attenuation
Dpass = 0.057501127785; % Passband Ripple
Dstop2 = 0.0001; % Second Stopband Attenuation
dens = 20; % Density Factor

% Calculate the order from the parameters using FIRPMORD.
[N, Fo, Ao, W] = firpmord([Fstop1 Fpass1 Fpass2 Fstop2]/(Fs/2), [0 1 ...
 0], [Dstop1 Dpass Dstop2]);

% Calculate the coefficients using the FIRPM function.
b = firpm(N, Fo, Ao, W, {dens});
Hd = dfilt.dffir(b);

% [EOF]

15 DSP Project

16 DSP Project

 6. Decoding RC5 protocol using Matlab

a=wavread('menunew.wav'); %reading the saved sample data
% a=wavrecord(3*44100,44100); %reading ‘real time’ input
wavsize=size(a);

i=1; %detecting the first ‘1’
while((a(i,1)<.999)&&(i<wavsize(1)))
 i=i+1;
end

delimit=i;
j=i+16; %taking the middle samples
vj=j;
k=1;

for k=1:1:28
 b(k)=0;
end

 k=2;
 b(1)=-1;
for j=j:38:wavsize
 b(k)=a(j,1);
 k=k+1;
end

c=b;
for i=1:1:28
if(c(i)>0)
 c(i)=1;

elseif(c(i)<0)
 c(i)=0;
end
end

for l=1:1:12
 d(l)=c(l+14);
end
d %Final binary output

17 DSP Project

%Binary to manchester coding

inputData=d;
nBits = length(inputData); % length of inputData
decodedData = ones(1,nBits/2);

if mod(nBits,2)~=0 % check if array is even
 error('Length of array must be even')
end

for i = nBits:-2:2 % count from max. size downwards with steps of 2
 if inputData(i) ~= inputData(i-1) % if bits are unequal
 decodedData(i/2) = inputData(i); % the first bit is the binary value
 else
 decodedData = []; %if bits are equal, it's not manchester code
 break %exit for loop
 end
end
decodedData %final Manchester coded data

18 DSP Project

 7. Appendix

5.1 Configuration File for the remote

begin remote

 name ..\config.cfg
 bits 13
 flags RC5|CONST_LENGTH // RC-5 protocol is used

 eps 30 //Margin of error (use high values if errors are more (default=25))
 aeps 100

 gap 107492 //Gap between two consecutive signals sent (in µs)
 toggle_bit_mask 0x800

 begin codes
 menu 0x103B
 p+ 0x1020
 p- 0x1021
 v+ 0x1010
 v- 0x1011
 power 0x100C
 mute 0x100D
 1 0x1001
 2 0x1002
 3 0x1003
 4 0x1004
 5 0x1005
 6 0x1006
 7 0x1007
 8 0x1008
 9 0x1009
 - 0x100A
 0 0x1000
 alt 0x1022
 pp 0x100E
 av 0x1038
 timer 0x1026
 ft- 0x102C
 ft+ 0x102B
 end codes
end remote

19 DSP Project

5.2 Sample Manchester coded signals sent by Transmitter:

Code sent for ‘2’ button

Code sent for ‘3’ button

Code sent for ‘menu’ button

20 DSP Project

Basic Remote

21 DSP Project

Music Remote

